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INTRODUCTION

¢ EXxisting studies seek to address post-fire
streamflow variability using run-of-the-mill
hydrological datasets with statistical
regression and conceptual simulation
models. They consistently fall short In
iIncorporating fire-related Earth data for
post-fire streamflow predictions.

“* We introduce an innovative Machine
Learning framework to address this
limitation, which seamlessly integrates
fire-related Earth data and delivers
promising results.

OBJECTIVE

** Integrate fire-related Earth data from
multiple NASA satellites with vegetation
and drought data.

“» Develop a reproducible Machine
Learning based model to understand the
post-fire streamflow variability.

METHODS
*» Support Vector Machine (SVM) algorithm
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Fig. 2. Map showing Burn Severity Across the CONUS (1984-2020). Model test beds were selected
based on the spatial variations of burn severity.
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** NBR — Normalized Burn Ratio; MaxFRP — Maximum Fire Radiative Power:
LAI — Leaf Area Index

Fig. 1. A schematic showing the methodology
applied for the work
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Fig. 3. Integration of fire-related Earth data from Fig.4. SVM ML model trained for Clark Fork Basin
NASA satellites with run-of-the-mill drought data In Montana, United States
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Fig. 5. Physical realism of the ML model in mimicking three real-life post-fire hydrologic conditions. (a) Long-term
streamflow predictions during recurring fire events. (b) Streamflow immediately after a mega fire in a watershed
with no significant history of fire. All data are at daily time-scale.
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SUMMARY

** The preliminary findings indicate that
Integrating fire, vegetation, and drought
data with machine learning offers a very
efficient method for predicting post-fire
streamflow.
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» This new approach will help to fill a critical
need In the hydrological community and
the stakeholders against the increasing
wild-fire events.
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