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❖ Integrate fire-related Earth data from 

multiple NASA satellites with vegetation 

and drought data.

❖ Develop a reproducible Machine 

Learning based model to understand the 

post-fire streamflow variability.

METHODS

RESULTS SUMMARY

REFERENCES

ACKNOWLEDGEMENT

Shihab Uddin1, Adnan Rajib1

❖ The preliminary findings indicate that 

integrating fire, vegetation, and drought 

data with machine learning offers a very 

efficient method for predicting post-fire 

streamflow.

❖ This new approach will help to fill a critical 

need in the hydrological community and 

the stakeholders against the increasing 

wild-fire events.
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OBJECTIVE

INTRODUCTION

❖ Existing studies seek to address post-fire 

streamflow variability using run-of-the-mill 

hydrological datasets with statistical 

regression and conceptual simulation 

models. They consistently fall short in 

incorporating fire-related Earth data for 

post-fire streamflow predictions.

❖ We introduce an innovative Machine 

Learning framework to address this 

limitation, which seamlessly integrates 

fire-related Earth data and delivers 

promising results.

❖ Support Vector Machine (SVM) algorithm

❑ USGS Streamflow Data

❑ Earth Observation Fire Data

❑ Drought Indices

Fig. 5. Physical realism of the ML model in mimicking three real-life post-fire hydrologic conditions. (a) Long-term 

streamflow predictions during recurring fire events. (b) Streamflow immediately after a mega fire in a watershed 

with no significant history of fire. All data are at daily time-scale. 

Fig.4. SVM ML model trained for Clark Fork Basin 

in Montana, United States

Fig. 1. A schematic showing the methodology 

applied for the work
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Fig. 3. Integration of fire-related Earth data from 

NASA satellites with run-of-the-mill drought data 
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Fig. 2. Map showing Burn Severity Across the CONUS (1984–2020). Model test beds were selected 

based on the spatial variations of burn severity.
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Model Development

Model preprocessing
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Evaluation metrices

RMSE, R2,P-bias, KGE

Model training

Support Vector Regression (SVR)

Post processing

Hypermeter tuning

Denormalization

Model Evaluation

** NBR – Normalized Burn Ratio; MaxFRP – Maximum Fire Radiative Power; 

LAI – Leaf Area Index
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